
DETERMINANTS OF COMMON CAROTID INTIMA-MEDIA THICKNESS Z SCORE: IMPLICATIONS IN RESEARCH RELATED TO MYOCARDIAL INJURY AFTER NONCARDIAC SURGERY

Srinivas Mantha, MD*, Sudha Lakshmi Tripuraneni, MD †, Lee A Fleisher, MD ‡, Michael F. Roizen, MD§, Venkat R Mantha, MD, FFARCSI || Prasada Rao Dasari, MS, Mch ¶ *Research Consultant & Pain Physician, Mantha Heart Clinic (MHC), Hyderabad, India; ‡ Chair, Department of Anesthesiology and the second s Critical Care, University of Pennsylvania Health System, Philadelphia, USA, §Chief Wellness Officer, Emeritus Professor, Cleveland Clinic Learn College of Medicine at Case Western Reserve University, Cleveland, Ohio, USA; || Research Advisor, MHC, Hyderabad, India; ¶ Chairman, Indo-US Hospital, Hyderabad, India

INTRODUCTION

Introduction:

- Common Carotid Intima-media Thickness (CCIMT) measured by ultrasound is a validated surrogate quantitative marker for atherosclerotic burden
- > A recent study proposed a 'Research Idea' to explore potential use of CCIMT in cardiac risk stratification and in the management of MINs[1]
- > The study used an advanced method called "echo-tracking" that relies on automated edge detection by radiofrequency signal processing of ultrasound to measure the thickness [1]
- > To account for increasing thickness with age, a derived variable i.e. 'CCIMT Z-score', is more useful
- \blacktriangleright CCIMT value ≥ 1.96 (≥ 97.5 percentile) was proposed for further management.
- \triangleright Z score is computed by a web-based algorithm designed by the first author for the purpose¹ w.suhitam.com/vascularage
- > The principle of echo-tracking and autoedge detection, the CCIMT image and \triangleright output of the algorithm are shown.

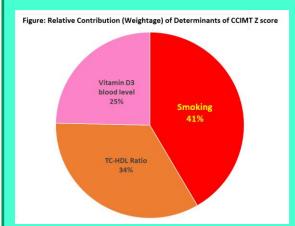
- > The method is "accurate" and "reliable" compared to other methods of **CCIMT** measurement
- Underlying coronary atherosclerosis is implicated in the pathogenesis of perioperative myocardial injuries associated with noncardiac surgery
 - "myocardial infarction" traditional criteria
 - "myocardial injury after noncardiac surgery (MINS)"identified only biomarker elevation [2]
- > A recent study found that preoperative N-terminal pro–B-type natriuretic peptide (NT-proBNP) improves cardiac risk stratification of MINS as identified by monitoring with serial highsensitivity cardiac troponin-T. [3]
- > Aim of the current study Primary: To identify the determinants of CCIMT Z score with the thickness measured auto-edge detection by

> Study Design: Cross-sectional, Prospective collected data

- Inclusion Criteria
 - \geq 20 to 60 years
- Exclusion criteria

 - > Known cardiovascular disease or cerebrovascular disease > Treatment for dyslipidemia
 - > History of treatment for vitamin D deficiency.
- \rightarrow CCIMT Z score = 0.80 + (0.841 x current smokir Sample size estimation: . The sample size required was adequate as (0.156 x TC-HDL ratio) - (0.0263 x vitamin D3)calculated for eight variables to be evaluated, Cohen's medium 'effect size' of 0. 15 and other standard criteria. level in ng/mL).
- ➢ IRB approval and Trial Registration
 - > Study protocol was approved by the Institute Ethics Committee at Indo-US Hospital, Ameerpet, Hyderabad, India
 - > Registered prospectively in a clinical trial registry in India (http://ctri.nic.in)
 - Protocol summary may be viewed from a registry using 'ccimt' in the key word search http://ctri.nic.in/Clinicaltrials/advancesearchmain.php
- > Methodology of CCIMT measurement
 - CCIMT measurement was made by B-mode ultrasonography using 3-13 MHz linear probe
 - 'double line' sign representing intima and media in the far wall of CCA is visualized.
 - > A new method called 'echo-tracking' that relies on automated edge detection by real-time radiofrequency signal processing of ultrasound was used.[1]
- \succ Analysis:

METHODS


> A multivariate linear regression analysis was planned with CCIMT z score as dependent variable and following independent variables: age, gender, body mass index (BMI), waist-to-height ratio (WHR), diabetes mellitus(DM) & current smoking status, total cholesterolto-HDL ratio (TC-HDL) ratio and serum vitamin D3 levels (ng/ml) > These indicators were selected *a priori* and defined in the protocol Setting: Outpatient vascular wellness clinic

> Healthy or mild systemic disease (diabetes mellitus, hypertension etc.) controlled with oral medications

Final linear model was developed from the variables significantly associated with CCMT z score

RESULTS

- A CCIMT z score of ≥ 1.96 (≥ 97.5 percentile) is d as highly abnormal that requires immediate attenti further evaluation.[1]
- There were 26 (22.22%) individuals in this category 14 (23.33%) in those <40 y.
- Of the variables tested, current smoking, TC-HDI and vitamin D3 were significantly associated wit CCIMT z score.
- Analysis of variance revealed model P value of 0
- variance inflation factor analysis did not reveal ex of multicollinearity issue among the tested variab
- Analysis using the three significant variables yiel following linear model to estimate the score:
- R square was 0.21
- Evaluation of standardized coefficients revealed weightage for smoking, TC-HDL ratio and vitami that decreasing rank order (Figure)

Serial #	Smoking	TC-HDL ratio	Vitamin D3 (ng/mL)	CCIMT Z score	
1	0 (No)	4.5	15	1.1075	
2	1 (Yes)	4.5	15	1.9485	
3	1 (Yes)	4.5	14	1.9748	
4	0 (No)	8	15	1.6535	
5	1 (Yes)	4.5	9	2.1063	
6	1 (Yes)	6	25	1.9195	
7	0 (No)	8.5	6	1.9682	

Vitamin D3 levels: 1 ng/mL= 2.496 nmol/L (SI units)

Model Characteristics	Point estimate (95% CIs)	
Sensitivity	0.23 (0.069 to 0.39)	Positiv Z scor
Specificity	0.93 (0.83 to 0.98)	Negati
Likelihood ratio for positive test	3.5 (1.23 to 9.94)	Z scor
Likelihood ratio for negative test	0.83 (0.66 to 1.02)	

	DISCUSSION & REFERENCES				
lefined ion and	The method is "accurate" and "reliable" compared to other methods of CCIMT measurement.				
ory and	Decreased vitamin D3 concentrations in blood were associated with serious cardiovascular events after				
L ratio 1 high	 noncardiac surgery [4]. Smoking and high TC-HDL ratio (normal <4.5) are known risk factors for atherosclerosis. 				
.0003 kistence	Current study showed low serum vitamin D3 is also associated with high CCIMT Z score				
les ded the	Vitamin D3 deficiency is associated with incident cardiovascular disease and there is graded increase in risk across categories of deficiency for levels 10 to <15 ng/ml				
ng=1) + blood	 and for levels <10 [5]. Deriving CCIMT Z score either by direct measurement by ultrasound or by estimating from the linear model e.g. as shown in the Table may identify a sub-set (i.e. with score 				
in D3 in	≥ 1.96) among 'low risk' individuals in whom stratification and/or monitoring with biomarkers may be beneficial. CCIMT seems to be an independent variable for predicting MINS				
ical Data ? Abnormal*					
No No Yes No Yes No	 References 1. Mantha S, Tripuraneni SL, Fleisher LA, Roizen MFA A Pract 2020;14:166-9. 				
Yes)Z score ≥1.96	 Thygesen K, Alpert JS, Jaffe AS, et al. Journal of American College of Cardiology 2018;72:2231-64. 				
tost - model	3. Duceppe E, Patel A, Chan MTV et al. Ann Intern Med 2020;172:96- 104.				
test = model ≥ 1.96 e test = model	 Turan A, Hesler BD, You J et al. Anesth Analg 2014;119:603-12. Wang TJ, Pencina MJ, Booth SL, et al Circulation 2008;117:503-11. 				
<1.96					

Author digalogurage Conflicts of Interact: None